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Abstract: The radical pair theory of CIDNP in high magnetic fields is critically reexamined. A model is de­
veloped, in which random walk diffusion of radical pairs is taken into account. Various interactions, which may 
lead to singlet-triplet mixing in radical pairs, are considered. The nuclear spin dependent probability of geminate 
recombination is calculated as a product of (i) the probability of geminate reencounters, previously obtained by 
Noyes, (ii) the probability that the pair is in the electronic singlet state, and (iii) X, the probability of reaction during 
singlet encounters. Enhancement factors of the correct order of magnitude are obtained in this way. The theory is 
similar to a model recently proposed by Adrian; differences arise in the treatment of encounters of free radicals with 
uncorrected spins, which is discussed in an Appendix. Furthermore, allowance is made for a nonzero exchange in­
tegral. Qualitative predictions of the theory are summarized in two simple rules (eq 52), one for net polarization 
and another for multiplet effects. A few examples of computer-simulated CIDNP spectra are given. 

1. Introduction 

The birth of chemically induced dynamic nuclear pol­
arization (CIDNP) was marked by the first reports2 of 
emission (E) and enhanced absorption (A) in nmr 
spectra of reacting systems. Only intensities of the 
reaction products were anomalous, other characteris­
tics (line frequencies and line width) being normal. 
Therefore it was obvious that the products were formed 
with nonequilibrium nuclear spin state populations. 
First ideas on the mechanism of this effect2b,d invoked 
electron-nuclear cross relaxation in free radicals to ex­
plain the enhanced polarization in a way similar to the 
Overhauser affect. A number of phenomena, how­
ever, were inexplicable or even in conflict with these 
early theories, viz., multiplet effects 2e 'd 'M (both E and A 
in the multiplet of a nucleus); dependence on type of 
reaction4 (products formed by recombination behaved 
opposite to transfer-reaction products); dependence on 
the electronic state multiplicity of the precursor in 
photochemical reaction;5-6 observation of polarization, 

(1) Address correspondence to Shell Research Laboratories, Am­
sterdam, The Netherlands. 

(2) (a) J. Bargon, H. Fischer, and U. Johnsen, Z. Naturforsch., A, 
22,1551(1967); (b) J. Bargon and H. Fischer, ibid., 22, 1556(1967); (c) 
H. R. Ward and R. G. Lawler, J. Amer. Chem. Soc, 89, 5518 (1967); 
(d) R. G. Lawler, ibid., 89, 5519 (1967). 

(3) (a) A. R. Lepley, ibid., 90, 2710 (1968); (b) ibid., 91, 749 (1969). 
(4) R. Kaptein, Chem. Phys. Lett., 2, 261 (1968). 
(5) (a) G. L. Closs and L. E. Closs, J. Amer. Chem. Soc, 91, 4549, 

4550 (1969); (b) G. L. Closs, ibid., 91, 4552 (1969); (c) G. L. Closs 
and A. D. Trifunac, ibid., 91, 4554 (1969). 

(6) R. Kaptein, J. A. den Hollander, D. Antheunis, and L. J. Ooster-
hoff, Chem. Commun., 1687 (1970). 

when the reaction was run in zero magnetic field ;7 the 
magnitude of the enhancement found to be larger than 
the Overhauser limit in some cases;6 polarization found 
in systems where radical life times were much larger 
than relaxation times in the radicals.2c'd-8 Although 
there is no reason why the originally proposed mech­
anism should not contribute to the polarization in some 
favorable cases, this mechanism, however, is usually 
overshadowed by the more powerful radical-pair mech­
anism, independently proposed by Closs69 and by 
Kaptein and Oosterhoff.10 This recent theory was 
rather successful, because it could qualitatively account 
for all published CIDNP spectra, with the possible ex­
ception of one or two pathological cases. The essen­
tials of the radical-pair mechanism can be discussed 
with the aid of Figure 1, showing schematically the 
energy levels of singlet (S) and triplet (T) states of a radi­
cal pair in a magnetic field for separations in the range of 
a few molecular diameters. 

When a pair separates after its birth or after a col­
lision, the S-T energy gap U(J is the exchange integral) 
becomes smaller and at distances where degeneracies 
or neardegeneracies occur the S and T states are mixed 
by hyperfine (hf) interactions of electrons with nuclei, 

(7) (a) H. R. Ward, R. G. Lawler, H. Y. Loken, and R. A. Cooper, 
J. Amer. Chem. Soc, 91, 4928 (1969); (b) M. Lehnig and H. Fischer, 
Z. Naturforsch., A, 24, 1771 (1969). 

(8) H. Fischer, / . Phys. Chem., 73, 3834 (1969). 
(9) G. L. Closs and A. D. Trifunac, / . Amer. Chem. Soc, 92, 2183, 

2186(1970). 
(10) (a) R. Kaptein and L. J. Oosterhoff, Chem. Phys. Lett., 4, 195 

(1969); (b) ibid., 4, 214(1969). 
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Figure 1. Energies of singlet and triplet states of a radical pair in a 
magnetic field vs. separation (r). The broken lines are the adiabatic 
energy levels. The S-T_ mixing region is denoted by Ar1; S-T0 

mixing occurs when r > n. 

provided the time spent in a mixing (or transition) 
region is sufficiently long. It will be shown in the next 
section that for the region A î in high fields (higher than 
a few thousand Gauss) this time is too short to allow 
appreciable S-T mixing, so that the system zips essen­
tially unchanged (nonadiabatically) through this region. 
However, the time spent in the S-T mixing region r > 
r0 (r0 roughly given by the condition that J is of the 
order of the hf parameters) is much larger and S-T 
transitions may occur. As these transitions are nu­
clear spin dependent, so is product formation, when 
this occurs only from the S state. This process has 
been appropriately called "spin selection."1112 The 
operator for S-T0 mixing is of the form (5zi — Sz2)Iz. 
As the nuclear spin part (Z2) is diagonal no nuclear spins 
are "flipped" and no polarization is generated in the 
sample considered as a whole. Only polarization for 
specific products results from this process. Therefore 
nuclear polarization in recombination products opposes 
that of the escaping radicals and hence of transfer-
reaction products. It will be clear that the magnitude 
of the polarization will be closely bound up with the 
motion of the pair; thus it depends on the dynamics of 
the "cage" processes. A satisfactory description of the 
"cage" reaction has been developed by Noyes.13 He 
makes the distinction1315 of primary cage reactions 
(reactions of a pair of next neighbors, surrounded by a 
cage of solvent molecules) and secondary recombina­
tions of original partners, after some relative diffusion 
has occurred. Both processes are frequently lumped 
together in the name "cage" reactions. The distinc­
tion is, however, important for us, because the short 
time span of primary cage reactions (1O-11 sec) will not 
allow nuclear spin-dependent intersystem crossing to 

(11) H. R. Ward, paper presented at the 159th National Meeting of 
the American Chemical Society, Houston, Texas, Feb 1970. 

(12) (a) H. R. Ward and R. G. Lawler, Accounts Chem. Res., 5, 
18 (1972); (b) R. G. Lawler, ibid., 5, 25 (1972). 

(13) (a) R. M. Noyes, J. Chem. Phys., 22, 1349 (1954); (b) / . Amer. 
Chem. Soc, 77, 2042 (1955); (c) ibid., 78, 5486 (1956); (d) Progr. 
React. Kinet., 1, 129 (1961). 

occur and the polarization is due to spin selection in 
subsequent encounters of the pair. Hence the time 
scale of CIDNP is limited by that of "geminate" recom­
bination. Accordingly, we shall employ Noyes' ap­
proach to the kinetic description of geminate recom­
bination14 in section 3 and incorporate the dynamics of 
the spin system, treated in section 2. Thus relative 
diffusion of radical pairs is explicitly taken into account 
in our model. In this respect it differs from other 
kinetic schemes12'15'16 including our previous simplified 
treatement,10b where the processes of product formation 
and escape of radical pairs are discussed in terms of 
time independent rate constants and "mean life times." 
These rate constants have only a formal meaning but 
cannot easily be correlated with solvent properties and 
diffusive behavior of radical pairs. 

In section 4 the link is made with the actual CIDNP 
spectra and it will be shown that all qualitative predic­
tions can be made with but two simple rules, one for net 
effects (E or A) and one for multiplet effects. If one is 
concerned with details or if spectra are too complicated, 
one has to resort to computer simulation techniques, 
some results of which are discussed in section 5. In 
this paper we shall be concerned only with the high-
field case, where reactions are run in fields of a few 
thousand gauss or larger. In a following paper17 this 
restriction will be removed and the formalism will be 
extended to include the effects of S-T± mixing, which 
have to be considered in low fields. 

2. The Spin Hamiltonian and S-T0 Mixing 

Intersystem crossing in a radical pair can be conve­
niently described in terms of a spin Hamiltonian. Itoh, 
et a/.,18 have recently shown how this spin Hamiltonian 
can be obtained from the total Hamiltonian for cases of 
near degeneracies of S and T states. The total Ham­
iltonian can be written 

H = He + H^s + / /HL + 

HHS + Has + Hsl + Hm 0 ) 

where He is the electronic energy term 

He = He* + He
b + H^ (2) 

He
a and He

b describing the radicals a and b and He*h 

their mutual interaction. H^s is the spin-orbit cou­
pling term; HKL, # H S , and Hm denote the interaction 
of the magnetic field with electronic orbital motion, 
electron spin, and nuclear spin, respectively; HSs is the 
electron spin-spin interaction term and HSi the nuclear 
hyperfine interaction term. Following the pertubation 
procedure of Itoh, et a/.,18 the spin Hamiltonian can be 
obtained containing terms appropriate for the S and T 
states of the radical pair and terms connecting these 
states 

#RP = #ex + #ZS + Hhl + Hr,+ H ZI O) 

The various terms will now be discussed. 
(14) During the preparation of this paper F. J. Adrian informed us 

that he also has applied this type of kinetics to the CIDNP problem. 
In some respects our treatment differs from his: cf. F. J. Adrian, 
J. Chem. Phys., 53, 3374 (1970). 

(15) (a) H. Fischer, Z. Naturforsch., A, 25, 1957 (1970); (b) M. 
Lehnig and H. Fischer, ibid., 25, 1963 (1970). 

(16) G. L. Closs and A. D. Trifunac, / . Amer. Chem. Soc, 92, 7227 
(1970). 

(17) R. Kaptein and J. A. den Hollander, ibid., 94, 6269 (1972). 
(18) K. Itoh, H. Hayashi, and S. Nagakura, MoI. Phys., 17, 561 (1969). 

Journal of the American Chemical Society / 94:18 / September 6, 1972 



6253 

2.1. The Exchange Term. The action of /fe
ab to­

gether with the Pauli exclusion principle gives rise to 
an energy difference between S and T states, A£ST. In 
valence bond (VB) theory the energy expression is 

£ S / T = 2£0 + (C ± J)I(I ± 5ab
2) (4) 

where £0 is the energy of the two fragments without in­
teraction; C, J, and Sab are Coulomb, exchange, and 
overlap integrals. As the VB theory gives a very good 
approximation to the electronic energy at large separa­
tions and as the condition S a b 2 « 1 is also satisfied at 
large r, we may identify A£ST = 27 for our purposes.19 

The Dirac exchange operator 

#ex = -JCh + 2S1-S2) (5) 

in the spin Hamiltonian will reproduce this energy 
difference (Si and S2 are electron spin operators). The 
exchange integral is 

J = <*a(l)*b(2)|#eab|*b(l)*a(2)> (6) 

where St̂  and ^b are the orbitals carrying the unpaired 
electrons. It is enlightening to consider the expression 
for / i n the case of two H atoms 

Jn, = e 2 S a b V a b - 2Sab<*a( l ) |e 2 / r b l [ *b( l )> + 

< * a ( l ) ^ ( 2 ) ! e 2 / A 2 | * b ( l ) < ] / a ( 2 ) ) (7) 

In this case the second term prevails, making J negative' 
which places the S state below the T state. J decreases 
exponentially with distance,22 giving the behavior 
sketched in Figure 1. For radicals in general a similar 
expression will hold. If there is a 7r-electron radical 
present, which is usually the case, there will be orienta­
tions for which Sab = 0 and / is positive. This is con­
firmed by recent calculations.23 So / will then depend 
both on separation and orientation. For freely tum­
bling and diffusing radicals this means that J fluctuates 
(correlation time of reorientation rc = 1O-11-1O-10 sec) 
within an exponential envelope. In addition, there 
may be contributions from indirect exchange mecha­
nisms via intervening solvent molecules. Calculations 
indicate that \J\ becomes of the order of the hf cou­
pling constants at about 6 A for H-atom Is orbitals22 

and about 10 A for 2p and 2s orbitals.23 Experiments 
show that r0 may be even smaller. Hirota and Weiss-
man24 found a neglible J at separations of 5-6 A in ion 
pairs. A value r0 = 6 A is quoted by Ferruti, et a/.25 

For nitroxide biradicals and from the work of Itoh, 
et a/.,18 a value of 7 A can be deduced. So it seems 
reasonable to assume that J drops to a value comparable 

(19) The VB theory describes the process of homolytic dissociation 
quite well, because it takes account of electron correlation. In MO 
theory also exchange integrals appear (difference between excited S and 
T configurations). However, MO theory without extensive configura­
tion interaction gives a very unreliable description at large separations20 

so that arguments derived from MO theory21 are not suitable to deduce 
the sign of J; also because we are interested in S and T states of the 
ground-state electronic configuration of the radical pair. The nature of 
the excited state of the precursor (e.g., in photochemical reactions) does 
not seem to be relevant except for its multiplicity. 

(20) C. A. Coulson, "Valence," Oxford University Press, London, 
1961, p 156. 

(21) H. Fischer, Chem. Phys. Lett., 4, 611 (1970). 
(22) C. Herring and M. Flicker, Phys. Rec, 134, A362 (1964). 
(23) J. N. Murrell and J. J. C. Teixeira-Dias, MoI. Phys., 19, 521 

(1970). 
(24) H. Hirota and S. I. Weissman, J. Amer. Chem. Soc, 86, 2538 

(1964). 
(25) P. Ferruti, D. Gill, M. P. Klein, H. H. Wang, G. Entine, and 

M. Calvin, ibid., 91, 3704 (1970). 

to the hf constants after only a few diffusive displace­
ments. 

We have previously10 approximated the time depen­
dence of / by a step function, changing J suddenly at 
t = 0 from a very large to a low (constant) value and we 
shall do the same here. It has the great advantage of 
making the effective Hamiltonian time independent. 
We considered only S-T0 mixing. These simplifica­
tions are justified if (i) we can neglect S-T± transitions; 
(ii) the time necessary to reach a separation r = r0 is 
short compared to the time spent in the S-T0 mixing 
region r > r0; (iii) the residual fluctuations of J around 
a mean value are small. If we anticipate that the tran­
sition probabilities for short times26 are of the order a2t2, 
where a = K^SI-HRPI^T)! ~ 1 0 8 radians/sec, and that the 
thermal equilibrium polarization is about 10-5, we see 
that we need times t > 10-10 sec to give appreciable en­
hancements. This is longer than the time needed for a 
few displacements (a few times 10 - 1 1 sec) and the time 
spent in Ar1, which is even shorter. So conditions i and 
ii seem to be satisfied. We do not really know very 
much about / for r > r0 so it is simplest to assume that 
iii will hold also. Glarum27 has worked out the 
problem with an exponential model for / and r(t) = vt. 
It seems that this overestimates somewhat the S-T± 

transition probabilities, for which there are no experi­
mental indications in high fields. In view of the neglect 
of fluctuations in J and the simplified description of the 
motion of the pair, we are of the opinion that this 
model27 does not necessarily provide a better descrip­
tion than the present diffusion model. 

2.2. The Zeeman Terms. The combined effects 
of HLs and # H L give rise1828 to a term linear in the 
field H 0 a n d Si , S 2 

HzB = ^ e H 0 - E a - S 1 + 0 . H 0 • gb • S 2 (8) 

The anisotropy of the g tensors, ga and gb, is averaged 
out by the tumbling motion of the radicals, which is 
usually faster (TC <~ 10_I1-10 -10 sec) than intersystem 
crossing. We may therefore neglect the anisotropic 
terms 

Hzs = &tfo(gaSlz + ghS2z) (9) 

Although the nuclear Zeeman term H2I = S ^ N ^ N -
IuH0 is comparable to the hf terms in high fields, it may 
be ignored, because it simply shifts the zero of energy, if 
only S-T0 mixing is considered. Of course it is also un­
important in low fields. 

2.3. The Hyperfine Terms. The term HSi in (1), 
averaged over the space part of the wave function, 
leads to the hf term describing the interaction of elec­
trons with nuclei Ij 

Hht = S1- E M A + S 2 - E M J , (10) 
J k 

The sum Sa runs over the nuclei of radical a. A1 are the 
isotropic hf coupling constants; we have again ne­
glected the anisotropic contributions. Equation 10 is 
valid when the density of 1J^ at the nuclei of b is neg-

(26) The Landau-Zener formula (cf. E. E. Nikitin in "Chemische 
Elementarprozesse," H. Hartmann, Ed., Springer-Verlag, West Berlin, 
1968, pp 43-77) which gives time-proportional transition probabilities 
is unreliable for short times or high velocities: cf. D. R. Bates, Proc. 
Roy. Soc. Ser. A, 257, 22 (1960). 

(27) S. H. Glarum, personal communication. 
(28) A. Carrington and A. D. McLachlan, "Introduction to Magnetic 

Resonance," Harper and Row, New York, N. Y., 1967, Chapter 9. 
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ligible, which certainly is the case at separations r > 
r0. 

2.4. Other Terms. The electron dipolar coupling 
term HD = S r D - S 2 is obtained by integrating HSs 
over the space part of the wave function. It is impor­
tant to note that HD cannot induce S-T transitions (it 
mixes only T states). The tensor D is completely 
anisotropic. In our case its main effects will be to mod­
ulate the energy of the T states; reorientation of the 
interradical vector may not be fast enough to average 
this out to zero. However, the uncertainty in / will be 
larger than the effects of HD, so we may as well dis­
regard this term. 

Other interactions that might mix S and T states are 
effects of spin-orbit coupling that have not yet been 
included in (8) and of spin-rotation interactions, which 
act during reorientation of a radical. Because they are 
zero on the average and have extremely short correla­
tion times (10-14-10-16 sec),29 spin-rotation interactions 
will not be very important. Spin-orbit coupling is con­
sidered in Appendix A, where it is shown that it is prob­
ably not important at r > r0, although it may play a role 
at shorter distances. This is important because no 
cross terms with terms included in eq 3 will appear in 
our results, in this way assuring that g factor differ­
ences and hf parameters can be obtained with some con­
fidence from CIDNP spectra. 

We are left with the effective spin Hamiltonian of the 
radical pair, which can be written in the form 

HRP = H°+H' (11) 

i/° = 1M*. + gb)peh-'H0(Su + S22) - J(W2 + 

2S1-S2) + 1A(S1 + S 8 ) ( E ^ A + YfAtU) (Ha) 
3 k 

H' = 1AC*. - 8,WJt-1Hd(Su - S22) + 
1A(Si - S 2 ) (EMA - YbAkh) ( l ib) 

Angular frequency units are used (108 radians/sec ~ 6 
G ~ 6 X 10~4 cm -1). H0 is diagonal in a basis of S 
and T functions and H' nondiagonal. 

2.5. S-T0 Mixing. For the description of time-
dependent mixing of S and T0 states we shall use a di­
rect product basis of electronic S and T functions, 
S = 2 - 1 / ! ( aA - /Siaj); ^o = 2~1/ ! (a^2 + fact*), and 
nuclear spin product functions Xn- A nuclear state n is 
characterized by a collection of nuclear spin quantum 
numbers: n = (. . .Mj, Mk. . .). We shall make use 
of magnetic equivalence factoring, the conditions being 
in our case: (i) the nuclei must be magnetically equiva­
lent in the reaction product in the usual sense of having 
the same chemical shifts and the same coupling con­
stants to other nuclei and (ii) they must have the same 
hf coupling constant and reside in the same radical. 
These nuclei are first coupled (e.g., in case of two equiv­
alent nuclei we make symmetric and antisymmetric 
combinations) and summations over j and k run over 
all composite nuclei. As in IIII0b the wave function is 
expanded as 

<t>n(t) = (C8n(OS + CT»(Oro}x» (12) 

The time dependence is given by ib<j>/bt = Hnv4>-
This leads to two coupled equations; solving these with 

(29) P. W. Atkins and D. Kivelson, J.Chem. Phys., 44, 169 (1966). 

initial conditions Cs(O) and CT(O) we find 

C8n(t) = Cs(0){cos Git -

(if/m) sin ait} — Cx(O)On sin cot (13) 

where w = (J2 + aB
2)I/2 and 

an = (SXn\H'\ToXn) = 
1I2[AgPJ1-

1H0 + Y^MJ - YhAkMk] (14) 
i k 

with Ag = ga — gb. The probability of finding the 
pair in the singlet state is 

Ic8n(Oi2 = ; Cs(O)!2 + 
liCT(0)i2 - IC8(O)12J(ajoiy sin2 cot (15) 

which gives for the special case of a singlet precursor 
with C8(O)= 1,CT(O) = O 

!Cs„
s(0i2 = 1 - (a„M !s in* uit (16a) 

and for a triplet precursor 

JCsJ(O'2 = (ajoiy sin2 oot (16b) 

It may be argued that our initial conditions imply that 
the functions Xn are eigenfunctions of the precursor, 
which may not generally be correct. In a following 
paper17 we will give the general proof that mixing of the 
Xn in the precursor does not affect the results whatso­
ever ; therefore we may as well start with the Xn-

A further condition for the validity of our treatment 
is that the radicals keep their phase relationship during 
the diffusive excursions, except for the effect of H'. 
This condition seems to be satisfied because spin-spin 
relaxation in radicals, which might destroy the spin 
correlation, is several orders of magnitude slower 
(Ti ~ 10~5-10~6 sec) than the process of geminate re­
combination. In the following it will be assumed that 
recombination occurs only from the singlet state, so its 
probability is proportional to JCsn(Ol2- This basic 
assumption of radical pair theory is certainly justified, 
when the triplet state is repulsive as in the case of the 
coupling of two H atoms or alkyl radicals. Appar­
ently it holds also for most disproportionation reactions, 
because the resulting CIDNP spectra can be treated on 
an equal footing. There are, however, reactions known 
where products are formed in a triplet state, notably in 
radiolysis,30 where fragments dissociate and recombine 
with large excess energy and in certain reactions of 
peroxy radicals where triplet state ketones are formed, 
as evidenced by chemiluminiscence.30'31 

We have previously10 averaged eq 16 over a distribu­
tion of lifetimes r of the pair and obtained for the 
probability of product formation 

Pn
s cc 1 - 2an

2r2/(l + 4u)2r2) (17a) 

PJ cc 2an
2r2/(l + 4co2r2) (17b) 

These formulas may still be useful in the case of birad-
icals32 and other cases where the fragments disappear 
by first-order kinetics. For freely diffusing radical 
pairs, however, the recombination reaction cannot 
strictly be described with first-order rate constants and 
we will now examine this process in more detail. 

(30) For a recent review see J. K. Thomas, Annu. Rev. Phys. Chem., 
21, 17 (1970). 

(31) R. F. Vassil'ev, Makormol. Chem., 126, 231 (1969). 
(32) R. Kaptein, M. Frater-Schroder, and L. J. Oosterhoff, Chem. 

Phys. Lett., 12, 16(1971). 
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3. Diffusion and Recombination of Radical Pairs 

At large separations the motion of the pair can be 
treated classically and is governed by stochastic pro­
cesses. Using the theory of random flights,33 Noyes130 

showed that the probability of the first reencounter be­
tween t and t + d; for a pair, separating from an en­
counter at t = 0, is f(0 dt where 

f(0 = mt-'/'e-™*^ (18) 

p (Noyes:/3) is the total probability of at least one 
reencounter: p = /o f(0 dt. For long times f(0 ~ 
mt~s/\ The exponential factor ensures that f(0 drops 
to zero for t = 0; the exact behavior at short times, 
however, is not very important. Both p and m can be 
expressed in the basic quantities p (the encounter diam­
eter), a (the root mean square displacement for rela­
tive diffusive motion), and v (the frequency of relative 
diffusive displacements) 

P ~ 1 - (1A + 3P/2*)-1 (19) 

m = 1.036(1 - p)H.p/ffy/vl/t (20) 

For small radicals in ordinary solvents v will be about 
1011 sec - 1 ; a will be equal to p or may be smaller, giving 
0.5 < p < 1 and m ~ 10-6 sec l /! (the ratio p/<x does not 
affect m very much). 

Let X be the probability for recombination during a 
singlet encounter; then for small S-T transition prob­
abilities, the chance of product formation during a first 
reencounter at time t is X( Csn(Ol 2f(0- Radicals of a 
pair that fails to react during the first reencounter start 
again their random walk and have a new chance of 
meeting each other. Setting Xn(O = XjCsn(Ol2, the 
probability for recombination in the interval (t, t + dt) 
becomes P„{t) dt with 

PnO) = Xn(Of(O + f'dhKO ~ h) X 
Jo 

{l -Mh)]Kt- h)t(ti) + 

( dhMt - h)Kt - h) C *dh{l - \n(h - h)\ X 
Jo Jo 

{l -Mh)]Kh - h)Kh)+ . . . (21) 

where t\, h, . . . are times of the first, second, . . . un­
successful encounters. We shall discuss approxima­
tions to this rather unwieldy expression for the cases of 
S, T, and F precursors (F: pairs formed by encounters 
of free radicals with uncorrelated spins). 

3.1. S Precursor. For small radicals both X and 
CSn

s(0|2 will b e dose to unity so that we may neglect 
all but the first term in eq 21. The total fraction of 
pairs, with nuclear state n that recombines, becomes 
Pr? = So X|Csn

s(0|2f(0 cU. This integral can be eval­
uated with (16a) and (18) giving 

pn
s = Mp - W a ^ i o - ' / ' ) = XP - xn) (22) 

defining xn. We have neglected terms of order (m4-
a Jp"3), which are several orders of magnitude smaller 
than xn. For an estimate of the polarization enhance­
ment we use m = 1O-6 sec1/!, an = 2 X 108 radians/sec, 
/ = 6 X 108 radians/sec, giving xn ~ 4 X 10-3. If 

(33) S. Chandrasekhar, Rev. Mod. Phys., IS, 1 (1943). 

p = 1A and the thermal polarization (gu(3sH0/kT) is 
10-5, we find a respectable enhancement of about 800, 
which is of the order of the largest value that has been 
found experimentally. 

3.2. T Precursor. As | C S B
T ( 0 | 2 (eq 16b) remains 

very small we have to consider the effect of the other 
terms in (21). The largest contributions come from un-
reactive encounters at times h, h, . . . close to zero. 
Counting only those contributions, we get for long 
times (c/. ref 13c) 

PnT0) = VsXf C8J(Oi 2f(0(l + P + P2 + P1 + • • •) = 
[X/3(l - p)]\CsJ(t)\H(t) (23) 

The factor V 3 has been included, because only one of 
the T states is active. The fractional population of 
product level n becomes 

/ V = ("Pn^t) dt = [X/3(l - p)]xn (24) 
Jo 

where Xn (defined in eq 22) enters with a positive sign. 
From eq 22 and 24 we find that Pn

s - Pm
s = - 3(1 - p)-

(Pn
T — Pm

T), so that the polarization is opposite to that 
of the S case. If we had put 7 = 0 we would have 
found PJ « \ / |a n | , a result obtained by Adrian.14 

However, relative line intensities calculated with this 
form are rather bad in most cases and we get usually 
much better results when intermediate values of / are 
used. 

3.3. F Precursor. The case of uncorrelated free-
radical encounters is not so straightforward as the S 
and T cases. During their first encounter a fraction 
X(Cs(O)J2 of pairs with Ms = 0 combines and the re­
mainder has a chance of meeting again, thereby giving 
polarization, because these pairs have more T than S 
character. Adrian's treatment amounts to multi­
plying the escaping fraction 1 — X[Cs(0)[2 by JCsn-
(Ol2 given in eq 15 and averaging the result over a dis­
tribution of all possible values of |CS(0)|2 and [CT-
(O)I2. We believe that this is not correct. We give a 
different procedure, the justification of which is given in 
Appendix B. 

The product formed at the first encounter of a pair 
with uncorrelated spins is not polarized, because the 
effect of any S -»• T (or lower -»• upper level) transitions 
that may have occurred before is canceled by an equal 
number of T -*• S (or upper -*• lower level) transitions. 
As half of the first encounter pairs will have M s = 0, 
the fraction that combines is V2X(I Cs(0)|2) = V4X, be­
cause the singlet fraction |CS(0)|2 is a random number 
between 0 and 1, so its mean value is V2. The recom­
bination probability at the next encounter is 1Z2 X (| CSJ-
(0|2)f(0 where 

< | C 8 n W ) = 1MO - \>|CSn
s(0l2 + |CSn

T(0(2} (25) 

Equation 25 is derived in Appendix B; |Csn
s(0|2 and 

Csn
T(0|2 are given by eq 16. As an interpretation of 

(25) one might say that after a collision the pairs sep­
arate behaving partly as singlets and partly as triplets. 
Taking into account subsequent encounters with h, 
h, . . . ~ 0, we obtain from (21), similarly to the T case 

P»FW = i M ' 1 I n ^XX(ICB J(t)\ 2)f(0 (26) 
i - p\ i - 1AX(I - X)} 
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and 

PJ = VA + PSO) dt = 
Jo 

1AX 1 + 
1 

i -P{I - 1AX(I - X ) } 
{p(l - X) + \xn] 

(27) 

where we have included the initially formed product. 
For X = 1, eq 27 takes the simple form 

1U + V4(I - P)-1Xn (28) 

It is seen that the polarization per molecule of product 
formed is smaller than for a T precursor, but, in con­
trast to results of other treatments,1214 it may become 
larger than for an S precursor. Qualitatively the 
polarization is similar to the T case; this is in accord 
with intuitive predictions by Gerhart and Ostermann34 

and by Closs8 and with experimental results.9- 15b 

A remark on the viscosity dependence of the polar­
ization seems to be in order. The quantity p can be 
estimated by various models,130 leading to expressions 
similar to eq 19. All models will agree that p becomes 
larger (closer to unity) when the viscosity increases, be­
cause a- (the diffusion step) decreases. This has been 
confirmed experimentally in studies on the cage effect.35 

The quantity m (eq 20) will not be very much affected by 
viscosity. Consequently, our model predicts that for 
an S precursor CIDNP intensities will not change very 
much by changing viscosity (whereas cage recombina­
tion yields may increase). However, polarization in 
the F and T case is predicted to become larger in more 
viscous solvents, due to the additional factor depending 
on p (in the T case (1 — p)~J). 

In the remainder of this section the special case of 
thermal equilibrium is discussed in the light of the 
diffusion model. Reactions competing with geminate 
recombination are treated in a subsequent paper.36 

3.4. Thermal Equilibrium. When a dimer (Q) is 
in thermal equilibrium with its radical monomers, there 
can be no enhanced polarization according to general 
thermodynamic principles. Hence polarization origi­
nating from geminate recombinations (S case) must be 
exactly canceled by that of free-radical encounters (F 
case). We have the situation depicted in Scheme I. 

Scheme I 

Q»: 

2R-

2R-

2R-

2R-

Qn 

We shall neglect Boltzmann differences and consider 
the case where the lifetime of the radicals is much longer 
than their relaxation times, so we can neglect polariza­
tion in the free radicals. The rate of formation of en­
counter pairs r2 is then independent of n. We can write 
the steady-state condition for the populations of Q 

dQJdt = -Zc1(I - PJ)Qn - (Qn - QJ)Tr1 + 
PJr2 = 0 

Qn 
Qn

0 + PJr2T1 

(1 - PJ)Ii1T1 + 1 
(29) 

(34) F. Gerhart and G. Ostermann, Tetrahedron Lett., 4705 (1969). 
(35) Cf. O. Dobis, J. M. Pearson, and M. Szwarc, J. Amer. Chem. 

Soc, 90, 278 (1968). 
(36) R. Kaptein, ibid., 94, 6262 (1972). 

Qn = Q0 is the equilibrium population of the levels of 
Q and T1 is a relaxation time. We consider the case 
where X = I , because eq 22 is strictly valid only for this 
case, so PJ = p — x„ and PJ is given by eq 28. The 
steady-state assumption imposes a further condition on 
Q0 

W - p)Q° = 1Ar2 (30) 

Substituting (22), (28), and (30) in (29) we have the re­
sult 

Qn = 
r2 {! + ( ! - / > + XJk1T1] 

4(1 - / 0 M l +(X-P + XJk1T1] 
Q0 (31) 

and indeed there is no polarization. Thus our model 
reproduces the expectations made on general thermo­
dynamic grounds for this case. Note that this result (31) 
would not have been obtained if other forms for PJ 
had been used.14 

4. CIDNP Intensities and Enhancement Factors 

All relevant quantities can now be obtained from the 
Pn, the fractional population of recombination product 
level n, calculated in the preceding section. Recom­
bination products (P) and products of radicals that 
escape the "cage" by diffusion (D products) are treated 
respectively (see Scheme II). 

Scheme II 

diff 

•Ra- + R b ' < ^ 

Ra- Da 

We shall first consider first-order spectra, where the 
functions Xn are correct eigenfunctions for the product 
and afterward see how second-order effects can be 
handled. 

4.1. Recombination and Disproportionations Prod­
ucts (P). Usually the nmr signal of a quasi-steady-
state concentration of polarized product is measured. 
The intensity vs. time curve goes through a maximum; it 
is built up in a time corresponding to the relaxation 
time of the product, TJ (photochemical reactions), or to 
the sample warming-up time (thermal reactions) if this 
time is longer than TJ; it falls off due to consumption of 
initiator. The intensity Imn is proportional to the pop­
ulation difference of levels m and n, lmn cc Nm — Nn. 
The steady-state condition for this difference is 

d (Nn - NJ = r((Pm - Pn) -
dt 

{(Nm -NJ-(NJ -Nn
0)] 

= 0 (32) 

(JVn Nn) - (NJ - AV) = r{TlmJ(Pm - Pn) (33) 

Y1 is the rate of radical-pair formation and T1nJ is the 
nuclear relaxation time of line mn of P (usually in the 
range 2-20 sec). The population difference at thermal 
equilibrium of the accumulated product at time t' is 

NJ - NJ = - V ^%F^ f «M dt W L kT J0 

where L - Tl1(Hi + 1), the total number of levels of P. 
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From (33) and (34) we obtain for the intensity enhance­
ment at the maximum of the curve (at time t') 

Amn -*m Lmn -1IUn T/ IT P /* 
— ' mn-*- lmn J 

(35) 

Imn° is the intensity after quenching of the reaction; 
/ = ri(t')/fo r((t) dt; Vmn is the theoretical enhancement 
factor per molecule P formed, first introduced by 
Q 0 S S 5 , 3 7 , 3 8 

V = 
r mn 

(Pm - Pn) LkT 

L^Pn gVI^Ho 
(36) 

with Pn given in eq 22 and 24. For the S case ZnPn 

L^p for xn« p; hence 

" \**m J*n/ fvA 
r mn 

For the T case 

V T _ r mn 

p gyfaHo 

\-%m Xn) Kl 

(37) 

(38) 

As I1nXn is of the same order as (xm — Xn) enormous en­
hancement factors (104-105) result from this definition. 
This is, however, rather meaningless, when there are 
contributions from intersystem crossing via other path­
ways. This difficulty could be avoided by defining an 
enhancement factor per radical pair formed 

Vnn' = (Pn - Pn)kT/gNfaH0 (39) 

which could be related to the loss of precursor signal 
intensity, Imn(B0) - Imn(Bf) 

I — I ° 
Imn(Bo) — Imn(Bt') 

' mn 1 lmn J (40) 

Unfortunately, 1(B0) — I(Bt>) is often more difficult to 
obtain experimentally than I0, the intensity of a newly 
formed product. 

In photochemical reactions, rt is frequently indepen­
dent of the precursor concentration and the CIDNP 
signal is constant over an extended time range. In that 
case for((i) dt = rtt' and / = l/t'; furthermore if 
Ln » lmn0, the relation of Vmn with experimental 
quantities is particularly simple 

V = I IJ °. t'lT, p 

' mn imnl*mn l / 1 lmn 
(41) 

where Tmn° is measured at t' » Timn
p. This form has 

been used recently by Lehnig and Fischer.16b For 
thermal reactions (S case) one may use / = KBfJ(B0 — 
Bf), B0 and Bf being the precursor concentrations at 
/ = 0 and t = t'. Equation 40 then takes the simple 
form 

V ' = 
' mn *mn\"t')l\mn Kf 

(42) 

relating V with the intensity of a precursor transition 
at time t'. This expression (42) can be conveniently 

(37) Closss actually used Vmn = (Pn - Pn)I(P7n + P„)(h)0, which 
does not seem to be properly normalized. For the S case both defini­
tions amount to the same. 

(38) The enhancement factor Kma]1, introduced by Fischer, 2a'b is 
fmax = (Imn — I mn")! I mn". Previously4'1011 we have used this definition. 

used in thermal reactions. For the F case rf is a func­
tion of kfBf, radical concentrations, and the rate con­
stants for diffusion-controlled encounters. 

In eq 32 we have assigned a relaxation time Tlmn* to 
every line mn in the spectrum of P. This is a simplifi­
cation because relaxation cannot generally be described 
with a single time constant for a transition mn; one 
should actually solve the coupled relaxation equations, 
which present a formidable problem in complex spectra 
(cf ref 39). Instead one often makes the further simpli­
fication of setting 7im„p = 7\p where J i p is an "av­
erage" relaxation time, and indeed this procedure can 
be a serious source of errors, when calculated relative 
intensities are compared with experimental ones. As 
is discussed elsewhere17 this problem is most serious 
when both net effects and multiplet effects are present 
and it renders the precise determination of g values 
difficult. 

4.2. Escape Products (D). We mentioned that 
radicals escaping from geminate recombination carry a 
polarization opposite to that of P. Frequently this 
polarization is transferred to products of radical-
transfer reactions, but it may also appear in combination 
products,16 if it is not overshadowed by F-type polariza­
tion. We treat the case where the subsequent reaction 
can be described with a first-order rate constant kt (cf. 
Scheme II). The steady-state condition for the pop­
ulations of radical a escaping the "cage" is 

dt 
(Rme. - Rn) = r{{(l - Pmh) - (1 - Pn,)) 

(R^ - RnMiTimn*)-1 + k, + kc) = 0 (43) 

with Tlmn
R, the relaxation time for transition mn in the 

radical, /c0 describing all other path by which the radical 
may disappear and 

Pm, = EhPm (44) 
k,Mk 

where the summation runs over all nuclear states of 
radical b. Similarly for product D 

dt 
(Dm, — Dna) — kt(Rma. Rn,) 

{(Dm, - DnR) - (Z)ma° - A , . 0 )} /TW = 0 

(Z>m. - A,,) ~ (Z»ma° " A1.0) = 

l/ma £n,)t(Ktl imn 

(Tlmn ) T kt + kc 

where (Ama° - A™0) is given by 

(45) 

E 
(1 - Pn) gyfaHo f'rt(t)dt (46) 

i - a Kl Kt "T Kc 

Thus we have for the intensity enhancement of D 

J-mn *m. 

with 

_ T/ D T D 
— ' mn -* lmn 

(Pn, 

(kt + K) 
(i/rlmn

R + k, + K) 
f (47) 

-* na) AJ&Kl 

E ( I - Pn)SxPxHo 

(48) 

(39) R. Freeman, S. Wittenkoek, and R. R. Ernst, / . Chem. Phvs., 52, 
1529 (1970). 
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m = ( . . .Mu Mj, Mx.. .) to n 
Mk, . . .) we obtain from (14) 

(...Mt - 1, M1, 

4.0 2.0 0 4.0 20 0 8PPM 

Figure 2. (a) 15.1-Mc nmr spectrum obtained during thermal 
decomposition of propionyl peroxide in hexachloroacetone; (b) 
computer simulated spectrum of ethyl chloride; and (c) normal 
15.1-Mc spectrum of ethyl chloride. Because of computer limita­
tions the simulated spectrum has been calculated for escape from 
the pair CH3CH2 /R-, where R- is a dummy radical with the same 
g value as that of the ethyl radical. 

By substituting (44) with (22), (24), or (27) formulas for 
the S, T, and F cases are obtained. Comparing eq 48 
with 36, it is seen that D polarization has the opposite 
sign as to the states of fragment a. 

In addition to nuclear relaxation in D, the inten­
sities (47) depend further on relaxation in the radical, 
which tends to decrease the polarization in the simple 
treatment given here. Again the relaxation problem is 
more complex40 and as noted in II10a there may also be 
effects due to electron polarization, which might even 
increase nuclear polarization via cross relaxation. 
However, there are not many experimental indications 
as to the importance of these effects, and it is surprising 
that eq 47 with the further assumption of equal relaxa­
tion times for different transitions, 7imB

D = T-f and 
Timn

R = TiR, often reproduces relative intensities 
rather well (cf. Figure 2). 

Formulas equivalent to (47) have recently been 
usecji5b,i6,4i t o e s t imate the magnitude of TiR from 
CIDNP experiments. Values in the range 10-4—10~3 

sec were found, somewhat larger than commonly ob­
tained in esr experiments. The reason may well be 
that 7\E is strongly field dependent, because the cor­
relation times are of the order of «s _ 1 (ws = g-
(3eH0h-: = 6 X 1010 radians/sec for H0 = 3300 G), so 
that TiR increases in the higher nmr fields. 

4.3. Structure of CIDNP Spectra. When P » 
an

2 intensities (33) and enhancement factors (36) are 
proportional to Qn an

2. We examine this case be­
cause it reveals some features which remain valid in the 
more general case. If we look at the spectrum of nu­
cleus i of fragment a and consider a transition from 

(40) Cf. J. H. Freed and G. K. Fraenkel, / . Chem. Phys., 39, 326 
(1963). 

(41) G. L. Closs and D. R. Paulson, J. Amer. Chem. Soc, 92, 7229 
(1970). 

/ » . « (am
2 - an

2) = 1I2Ax[Ag^H^1 + 

YfA1M, - YhAkMk + AlM1 - 1A)] (49) 

Except for the last term this expression has also been 
given by others.27,15-12 It is instructive to consider the 
effect of the various terms of (49). The first term gives 
rise to a net effect, E or A, depending on the sign of 
AgAi (note that Ag = ga — gb, so that this effect is op­
posite for nuclei of fragments a and b). As long as 
/2 » an

2 for all a„, eq 49 predicts that Imn increases 
linearly with the field H0 (Vmn independent of H0). 
However, when J2 is comparable to or smaller than 
an

2, the theory predicts a decrease of Imn for higher 
fields (cf. ref 2). Thus there will be a maximum42 in 
the curve Imn vs. H0. 

The second term gives the multiplet effect; it depends 
on the sign of AiA1M1 and, in a multiplet of nucleus i 
coupled to j , the lines are labeled according to M1 = 
I1, -I1 + 1,...,+I1. The "phase" of the multiplet 
effect (E/A or AjE) depends further on the absolute 
sign43 of the coupling constant Ji1, because this deter­
mines whether lines with positive M1 appear low or high 
field in the multiplet of /. 

The third term gives a multiplet effect of opposite 
phase for coupling of i to a nucleus of radical b. As to 
the field dependence of multiplet effects, Imn is indepen­
dent of H0 and Vmn <x (TZ0)

-1. 
The last term is of no importance in pure first-order 

spectra, because transitions with Mt > l/2 and M( < 1J2 

are degenerate and the effects cancel. However, in 
spectra exhibiting second-order effects (which is 
common in case of proton nmr) polarization due to this 
term appears. For instance, consider the A lines in 
AnB spectra. If /B = Va a n d n > 1 several transitions 
contribute to the A "doublet" and the degeneracy of 
these transitions is always lifted in such a way44 that 
transitions with Mt > 1J2 appear inside and with M1 < 
1I2 outside the "doublet" or vice versa depending on the 
sign of TAB. Thus the lines of the doublet acquire, e.g., 
AjE and E/A character, irrespective as to whether nu­
cleus B was present in the pair or not. This might be 
called a "second order" multiplet effect, which may be 
superimposed on a "first order" multiplet effect. Ex­
amples hereof are given below (cf. Figures 3 and 4). 

For D products we find, carrying out the summation 
ofeq44 

P«* = -~Kf^1/2Ai{Agl3eHah-i + m a •* na. 

Y^1M1 + Ai(M1 - \/=)}£b (50) 

(42) This has actually been observed for benzene formed during de­
composition of benzoyl peroxide (H. Fischer and M. Lehnig, personal 
communication). 

(43) Whereas normal nmr spectra are unaffected by a simultaneous 
change in sign of all /,-,-, the CIDNP spectrum in the case of a pure 
multiplet effect (A# = 0) is completely reversed. The proof is easily 
given by an extension of the proof given by Corio for normal spectra 
(ref 44, p 167), by noting that the populations Nm a am

2 in this case are 
invariant to a change in sign of all Mi, M1, because am

2 is a bilinear form 
in MiM1. 

(44) P. L. Corio, "Structure of High-Resolution Nmr Spectra," 
Academic Press, New York, N. Y„ 1966, p 208. 
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(a) (b) (a) (b) 

fl J n 
- 1 — 

1.0 
— I — 
0.9 1.0 0.9 8 PPM 

Figure 3. (a) 100-Mc nmr spectrum obtained during thermal de­
composition of azobisisobutyronitrile in thiophenol and (b) com­
puter-simulated spectrum of 2-cyanopropane. 

and as Sn(I — Pn) 
for the S case 

L ( I - \p) and L = L^Lb we have 

V D = — 
r mn 

X m*h kT 

a 
JVt 

1A)I (51) 

Thus Da product polarization is not effected by the pres­
ence of nuclei in radical b. Incidentally eq 51 shows 
that if there is no recombination (X = 0) the D product 
is not polarized. 

We may now give a summary of the predictions of 
radical-pair theory for high-field CIDNP spectra. 1. S 
precursor polarization is opposite to polarization of T 
and F precursors. 2. D product polarization is oppo­
site to polarization in P products. Spectra of fragment 
Da are independent of the presence of nuclei in radical 
b. 3. Net effect a AgAt. Sign is different for nuclei 
of fragments a and b. 4. Multiplet effect & Af-Af 
or <x AfA^. The sign depends further on the sign of 
Jt1 and Jik. 5. "Second-order" multiplet effects may 
appear in spectra of magnetically equivalent nuclei, 
even when coupled to a nucleus not present in the rad­
ical pair. The sign depends on the sign of Ji} but not 
on the sign of At. 

4.4. Simple Rules. The first four results can be 
taken together in two rules containing all sign reversals. 
Qualitative features of CIDNP spectra can be described 
with the signs of two quantities, r„e for net effects and 
-L me for multiplet effects 

Tne = M^gAi 

HeA1A1Jn(Tu 

+ ,A 
-,E 

t\ EjA 
AjE 

(52a) 

(52b) 

where it is to be understood that the spectrum of nu­
cleus i of fragment a is considered, n, e, and Cr4; are 
labels indicating precursor multiplicity, P or D product, 
and presence of / and / in the same or different radicals 

~v 

1.0 0.8 1.0 0.8 6 PPM 

Figure 4. (a) High-field part of the 100-Mc nmr spectrum of iso-
butane formed from disproportionation of tert-butyl radicals. The 
shaded signal is due to the precursor; (b) computer simulation. 

' { 

Ou 

+ for T and F precursor 
— for S precursor 

-f for P products (recombination) 
— for D products (escape) 

+ when i and / reside in the same radical 
— when i and / reside in different radicals 

It is a striking fact that in almost all cases, where 
reaction conditions are unambiguous, CIDNP spectra 
can be qualitatively explained by the two simple rules 
(52). We have found them quite useful for instant 
determination of precursor multiplicities, signs of hf 
parameters, etc., from the spectra. The use of these 
rules will be illustrated with two examples. 

(i) Methyl acetate formed during thermal decomposi­
tion of acetyl peroxide was reported4 to show emission for 
the methoxy group: CH3• + CH3CO2•—> CH3COjCH3*. 
In the methyl (a)-acetoxy (b) radical pair, the acetoxy 
radical undoubtedly has the larger g value, due to the 
presence of the oxygen atoms, so Ag is negative. At is 
also negative in the methyl radical and we are looking at 
a recombination product from a singlet precursor, so 
rne = 1 = —, hence E. For the D product, 
methyl chloride, we have all minus signs, hence A. 

(ii) From the decomposition of a cyclohexadienone 
peroxide4 two ferr-butyl radicals are formed which dis­
proportionate to give isobutane and isobutene, both 
showing EjA multiplet effects. For the rerf-butyl 

2C(CH,)3 HC(CH3)3 + H2C=C(CH3)2 (53) 

radical A is positive. In isobutane Jn is positive and 
the methine H is abstracted from the other radical so 
we have rme = h + + H = + , EjA. For 
isobutene Jn is negative46 and the splitting is due to pro­
tons of the same fragment, giving rme = h + + — 
+ = + , hence also EjA (but for different reasons). 

When a small multiplet effect is superimposed on a 
large net effect, rule 52b may break down, because the 
apparent multiplet effect may be reversed. In that case 
and in the case of strongly coupled spectra it is better to 
employ computer simulation techniques. 

(45) J. W. Emsley, J. Feeney, and L. H. Sutcliffe, "High Resolution 
Nmr Spectroscopy," Vol. 2, Pergamon Press, Oxford, 1966, Chapter 10. 
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4.5. Second-Order Spectra and Computer Simula­
tion. When chemical shift differences are not much 
larger than the coupling constants Jih second-order 
effects appear in nmr spectra. The functions Xn are 
then not eigenfunctions of the nuclear Hamiltonian of 
the product 

H? = 2>,/<. + X X I r I] (54) 

where ht are chemical shifts relative to a reference 
signal. To describe the spectrum the eigenvalues 
9./ of Hp are obtained by the transformation 

S-1HpS = Sip(£ip diagonal) (55) 

The eigenfunctions are 

Xv = Y,SnvXn (56) 
n 

Line frequencies are given by Sl/ — U/ and relative in­
tensities by46 

I*. K [(X^ZyMxMP. -P.) (57) 

The populations Pv of the mixed states are calculated 
from the projections of </>„(?) (eq 12) on the state x* 

'cut)':2 = Ei<5x,i*n(0)!2 = E5„2!C8n(Oi2 (58) 
n n 

where the last step follows from (56) and the orthog­
onality of the x?!' Along the lines of sections 3 this 
leads to 

P,- P,= H(Sn^ - SnS)Pn (59) 
n 

with Pn given by (22), (24), or (27) for S, T, and F cases. 
A nmr spectrum simulation program was modified47 by 
incorporating (57) with (59) for relative CIDNP in­
tensities. A few examples of computer simulations are 
shown below. 

5. Examples 

5.1. Ethyl Chloride at 15.1 Mc. The 100-Mc 
CIDNP spectrum of the thermal decomposition of 
propionyl peroxide (PPO) in hexachloroacetone has 
been given in I.4 The spectrum shows AjE and EjA 
multiplet effects for ethyl chloride and butane, respec­
tively, and is in accord with the formation of two ethyl 
radicals (R •) giving the reactions 

diff 

PPO — > 2R7 < ^ R- + X C I — > • RCl + X • (60) 

R-R 

The 15.1-Mc spectrum (Varian DA-60, H0 = 3550 G) is 
shown in Figure 2a together with a computer simulation 
(Figure 2b) and the normal 15-Mc spectrum of ethyl 
chloride (Figure 2c). Due to its greater solubility at the 
temperature of the reaction (110°), ethyl chloride ap­
peared much stronger in the 100-Mc spectrum than 
butane; this is even more pronounced at 15.1 Mc be­
cause of cancellation of opposite polarization effects in 
nearly degenerate butane lines, so the spectrum of 
Figure 2a is almost completely that of ethyl chloride. 
The enhancement factor is 2500 ± 1000 (difficult to 

(46) P. L. Corio, ref 44, p 164. 
(47) We thank Dr. C. W. Haigh for a listing of LAME, a program 

employing magnetic equivalence factoring. We are indebted to Mr. J. 
A. den Hollander for making the modification. 

estimate for gases). It is about a factor 7 larger than at 
100 Mc as expected for multiplet effects. The hf cou­
pling constants of the ethyl radical are48 .4(CH3) = 
26.9 G, ^(CH2) = -22 .4 G. For the simulated spec­
trum the best fit was obtained with \j\ = 6 X 10s 

radians/sec, but higher values did not change the spec­
trum dramatically. Values of \J\ < 108 radians/sec 
gave worse results. Differences in relaxation times 
were not taken into account. The agreement with ex­
periment is satisfactory, the largest deviations occurring 
in the region around 1 ppm, where butane may contrib­
ute (Figure 2a). The following can be inferred from 
the good agreement, (i) S-T± transitions do not con­
tribute to the polarization. This was observed in sev­
eral other systems run at 15 Mc as well. So these 
transitions are certainly unimportant in the higher field 
(14 and 23.5 kG), where CIDNP spectra are usually re­
corded, (ii) Relaxation effects in the radical are prob­
ably not important, (iii) Relaxation in the product 
also does not affect relative intensities in this case. 
Lines involving transitions between isolated levels, such 
as the strong line at 1.47 ppm, are expected to have a 
longer Ti than others. This line, however, has com­
pletely vanished in a pure multiplet spectrum, because 
it has Mj = 0. If the mean time for escape of gaseous 
products from the sample is shorter than Ti0, there 
would also be little dependence on relaxation. 

5.2. 2-Cyanopropane. The 100-Mc spectrum (Var­
ian HA-100 spectrometer) shown in Figure 3a is ob­
tained during thermal decomposition of azobisiso-
butyronitrile (AIBN) in thiophenol (SH). The reactions 
are 

diff 

AIBN—^2R7<^J R- + SH—> RH + S- (61) 

R-R 

where R- = (CH3)2CCN, ,4(CH3) = 20.3 G,49 and 
RH is 2-cyanopropane, normally giving a somewhat 
broadened doublet for the methyl groups at 0.95 ppm. 

According to simple first-order arguments one would 
not expect polarization at all, because the splitting of 
the equivalent methyl groups is due to a proton not 
present in the pair. So we have a case of a pure second-
order multiplet effect of the type discussed in section 
4.3, caused by the term Af(M1 — 1J2) in eq 49. The 
"phase" is such as expected for an A6B spectrum of a D 
product with positive /AB, as can be seen from the com­
puter simulation (Figure 3b). The experimental spec­
trum seems to have A character, but this is due to 
underlying unpolarized product, the enhancements 
being not very large in this case. The abstracted 
proton did not show polarization. Neither this nor 
other cases provide indications of polarization re­
sulting from a transfer reaction itself.34 Emission of 
chloroform ascribed to such a process38-50 is better ex­
plained by a radical disproportionation reaction (F 
case) of CCl3 • with alkyl radicals. 

5.3. Isobutane. In part I4 we studied a reaction in­
volving a pair of tert-butyl radicals, A(CH3) = 22.7 

(48) R. W. Fessenden and R. H. Schuler, J. Chem. Phys., 39, 2147 
(1963). 

(49) S. A. Weiner and G. S. Hammond, J. Amer. Chem. Soc, 91, 
986(1969). 

(50) A. L. Buchachenko, S. V. Rykov, and A. V. Kessenick, Zh. 
Fiz. Khim., 44, 876 (1970). 
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G,48 reaction 53. The 100-Mc spectrum of the iso-
butane methyl groups is presented in Figure 4a. 

Superimposed on the EjA doublet is a second-order 
multiplet effect, not to be confused with wiggles. The 
sign is opposite to that of Figure 3, because isobutane is 
a P product. The simulated spectrum of Figure 4b re­
produces both of these effects. It may be noted that 
for the problem of two tert-butyl radicals (20 spins!) 
the use of magnetic equivalence factoring is imperative. 

Conclusions 

Radical pair theory can account for the coarse struc­
ture of CIDNP spectra, as well as for details of complex 
spectra. In the cases, which we have studied, the high-
field spectra are not very sensitive to the dynamic model 
used for the description of the diffusion process. The 
spectra could be accommodated by both the diffusion 
model and the exponential averaging model.10 How­
ever, in other cases,51 which seem to require smaller 
values of the effective exchange integral J, the differ­
ences are more pronounced and the diffusion model 
gives a better description of relative line intensities. 

Another discriminative feature of this model is the 
fact that relatively long-lived radical pairs are predicted 
to contribute to the polarization. As will be reported 
shortly,36 studies of the time scale by means of com­
petitive reactions of radical pairs also afford evidence in 
favor of the diffusion model. 
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Appendix A 

Spin-Orbit Coupling in Radical Pairs. Spin-orbi* 
interactions are responsible for intersystem crossing n 
molecules in excited states.52'63 If they were equally 
important in radical pairs they could seriously detract 
from the effects of the hf interactions. The spin-orbit 
coupling Hamiltonian may be written 

# L S = E f iL,-S( (Al) 
i 

Li is the orbital angular momentum operator for elec­
tron i and f«is a constant, depending on the nucleus, in 
the field of which the electron is moving. Other contri­
butions to HLS are usually negligible.5253 We are 
looking for matrix elements HST connecting S and T 
states of the radical pair in the ground-state electronic 

(51) G. L. Closs, personal communication. 
(52) (a) H. F. Hameka and L. J. Oosterhoff, MoI. Phys., 1, 358 

(1958); (b)H. F. Hameka in "The Triplet State," A. Zahlan, Ed., Cam­
bridge University Press, New York, N. Y., 1967, p 2. 

(53) (a) J. H. Van der Waals and M. S. De Groot, ref 52b, p 101; 
(b) W. S. Veeman and J. H. van der Waals, MoI. Phys., 18, 63 (1970). 

configuration. Up to second order18 

*ST = <*..i*i*„> - E' < * « i y < y * " > (A2) 
where SPos and ^0T are ground-state singlet and triplet 
wave functions (space and spin) and H is the full Ham­
iltonian of eq 1. There are no first-order contributions 
of H-LS because this term mixes the ground state only 
with excited configurations. In second order the com­
bined effects of //LS and 7/HL lead to deviations of the g 
values from the free electron value (Ag term), which 
have already been considered. Furthermore we have to 
worry about terms involving //Ls and He (eq 2) because 
these may become relatively large 

-«ST = — 2^ p r \-Ai) 
i &i — £o 

Consider a pair of radicals a and b with localized elec­
trons. The angular momentum operators Luf (u = 
x, y, z at center a) are axial vectors that are antisym­
metric with respect to reflection in a plane that con­
tains the axis u. Hence Luf- mixes only symmetric (a) 
with antisymmetric (a) states (local space symmetry at 
a). We need only consider one-center contributions of 
Luf-\ if the wave functions are labeled according to 
their spacial symmetry by (xa = a or a), non-
vanishing matrix elements of HLS are 

(^os(o-aXb)[^UiaSi[^;T(aaXb)) (A4) 

and similar expressions for center b. The operator He, 
however, is symmetric. Therefore, when its matrix 
element 

< * M a a X b ) ' # e | * O T ( o V C b ) > ( A 5 ) 

is expanded in integrals over atomic orbitals, all one-
center contributions vanish by symmetry and there are 
only contributions from two-center integrals involving 
orbitals of both a and b for relative orientations such 
that Xb is nonsymmetric. 

The order of magnitude of HST in (A 1) is f (AF) - 1 ^ b ~ 
10~3iCab where K^ is an electron repulsion integral, 
which is exponentially dependent on distance, similarly 
to the exchange integral J. Thus we conclude that at 
distances r > r$, where J has become very small, S-T 
mixing by spin-orbit coupling of the type discussed here 
will be negligible. At short distances it might become 
relatively more important. 

Appendix B 

Free-Radical Encounters. We wish to examine the 
process of product-forming encounters of free radicals 
with initially uncorrelated spins. We make use of 
evolution operators U(t,t0) to describe the time evolu­
tion of wave functions.54 

¥ ( 0 = U[Uh)Hh) (Bl) 

Considering only Ms = 0 encounters (others are inreact-
ive) we start with 

*(0) = C3(O)^OS + CT(O)^0T (B2) 

where ^os and ^0T are the same as in Appendix A 
(space and spin functions). The wave function after 

(54) A. Messiah, "Quantum Mechanics," Vol. 1, North Holland 
Publishing Co., Amsterdam, 1967, p 310. 
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an encounter of duration t0 is 

*«o) = t/enc(?o)^(0) = e ^ " H*ncit)%(0) (B3) 

where Henc represents the Hamiltonian during the 
encounter, describing the process of product formation 
by energy transfer to surrounding solvent molecules, 
which we do not consider explicitly. When product 
formation occurs only from the singlet state, the action 
of Uenc on 1^0S and ^0T can be described as follows 

£/en0(?o)*os = e~ ia(l + ^ r V ! [ * o s + v*rs] (B4a) 

UeUto)*o? = e - ^ T (B4b) 

where ^ P s represents a lower vibrational state of the 
product and a. and /3 are phase angles. After the en­
counter ^ ( 0 is given by (Bl) with U = U-Rp(Uh), 
describing S-T mixing in the radical pair. In terms of 
the evolution operator the coefficients of eq 16 are 

Cs8O) = <*osi EM^o)I *os) (B5a) 

CsT(Z) = <*OS|£/RP(?,ZO);*OT) (B5b) 

where we have suppressed the label n. The fraction 

1. Introduction 
Potentially CIDNP is an extremely useful tool for the 

study of fast reactions that compete with geminate 
recombination of radical pairs. It is the purpose of 
this paper to give a discussion of polarization effects 
in the case of competitive reactions, by an extension 
of a diffusion model for CIDNP given previously 
in VIII.2 

(1) Address correspondence to Shell Research Laboratories, Amster­
dam, The Netherlands. 

(2) (a) Part VIII: R. Kaptein, J. Amer. Chem. Soc, 94, 6251 (1972); 
(b) cf. also, F. J. Adrian, / . Chem. Phys., S3, 3374 (1970); 54, 3912 
(1971). 

that gives product during the first encounter is 

I <*psi Hh))V = T ^ ™ ! C S ( 0 ) | 2 = X|Cs(0)|2 (B6) 
1 + v 

where we have used the orthogonality (^PS|^OS) = 0. 
Using (Bl-5) the quantity of interest, |C8

F(0|2 , can be 
obtained 

CsF(0 = <*os!*(0> = e~ia(\ + T,2)-1^ X 

C8(0)C8
8(r) + e-J3CT(0)C8

T(0 (B7) 

[Cs r(0|2 = (1 + ^)-1IC8(O)12| Cs s(0|2 + 

I CT(0)| 2 | C S T ( 0 | 2 + 

e!7(l + 7j2)-I/!Cs*(0)Cg
s(0*CT(0)C8T(0 + cc (B8) 

where y = a — /3 and cc denotes complex conjugate. 
The last two terms of (B8) vanish when this expression 
is averaged over the random phases of C8(O), CT(O), 
and y. Averaging also over all possible values of 
C8(O)I2 and I CT(0)|2 and using the identity (1 + y2)'1 = 

1 — X (from B6) we obtain 

<|C8
F(0|2) = 1M(I - X)[Cs

8(0i2 + IC8T(Ol2] (B9) 

This expression has been used in section 3. 

This model is based on singlet (S)-triplet (T) mixing 
in radical pairs, induced by magnetic (Zeeman and 
hyperfine) interactions, and its effect on the geminate 
recombination probabilities of radical pairs. Via the 
hyperfine interactions with the electron spins, nuclear 
spins have a handle on the electronic multiplicity of 
the pairs. Apart from electronic and possibly steric 
effects during reencounters, geminate recombination 
obviously depends also on the reencounter probability 
of the pairs, which we have treated2 in terms of a ran­
dom-walk diffusion model.3 We will limit ourselves 

(3) (a) R. M. Noyes, ibid., 22, 1349 (1954); (b) / . Amer. Chem. Soc, 
77, 2042(1955); (c) ibid., 78, 5486(1956). 
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Abstract: A previously developed theory of CIDNP in high magnetic fields is extended to describe cases where 
rapid reactions occur by which radical pairs are transformed into other pairs. Since the newly formed pairs remain 
spin-correlated and have a chance of reencounter during their random walk diffusion, nuclear polarization can 
occur for products of these radical pairs and of pairs formed by subsequent reactions. It is shown that polarization 
in products of a certain pair may originate from S-T0 mixing in preceding pairs (memory effect). It is found that 
both product yields and polarization for products of secondary pairs depend on ~Vk in the region of small k (k is 
the first-order rate constant for the reaction). This result is typical for the diffusion model. Calculations indicate 
that secondary pairs formed after relatively long times (up to 1O-6 sec) could still give rise to observable CIDNP 
effects in favorable cases. Experimental examples of the reactions discussed here are radical scavenging reactions 
(transfer reaction of isopropyl radicals with bromotrichloromethane), fragmentations (decarboxylation of acetoxy 
radicals), and rearrangements (cyclopropylcarbinyl -*• butenyl). It appears that CIDNP can be used to study fast 
radical reactions over a wide range of rate constants (106-1010 sec-1), although at present uncertainties in the de­
termination of k are rather large. 
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